Saturday, January 27, 2007

Intermediate Avidity T Cells Regulated Through Qa-1

Jiang and colleagues have developed a model of immune regulation based on the details of antigen recognition: T cell receptors (TCRs) engaging peptides held by histocompatibility (MHC) molecules on an antigen presenting cell (APC). The strength of multivalent binding, or avidity, such as occurs between T cell and APC, depends on the affinity of individual receptor-ligand pairs (TCR-peptide/MHC) and the number of pairs engaged. They propose that autoimmunity may be avoided by controlling T cells with intermediate avidity for self proteins, since autoreactive T cells with high and low avidity are deleted during T cell maturation in the thymus (positive and negative selection). They suggest that T cells recognizing antigen with intermediate avidity are triggered to express non-classical MHC molecules (class Ib: Qa-1 in mice, HLA-E in humans), which are recognized by regulatory CD8+ T cells (Treg). Previously, they had shown that some pathogenic CD4+ T cells expressed Qa-1 and were suppressed by CD8+ Treg in experimental allergic encephalomyelitis, a mouse model of multiple sclerosis. Here, they analyze the immune response to the protein hen-egg lysozyme (HEL). The susceptibility of the HEL-specific CD4+ T cells to suppression was strikingly dependent on their avidity. (Avidity was estimated by titering HEL into a fixed number of APC and measuring proliferation.) Intermediate-avidity clones, but not high- or low-avidity clones, were suppressed. Though they demonstrate that this suppression can be blocked by Qa-1-specific antibodies, they do not report the correlation with Qa-1 expression. Qa-1 has an established role as a checkpoint for classical MHC molecule expression and regulator of Natural Killer cells but they cite previous studies of a Qa-1 knockout mouse to discount these mechanisms in this model. An intriguing, though incomplete, model.
Jiang H, Wu Y, Liang B, Zheng Z, Tang G, Kanellopoulos J, Soloski M, Winchester R, Goldstein I, Chess L. "An affinity/avidity model of peripheral T cell regulation." J Clin Invest. 2005 Feb;115(2):302-12.

1 comment:

Reuel said...

Avidity is Variable

This model does not seem to take into account the dynamics of MHC expression. Although the affinity of a TCR for a particular MHC/peptide is constant, the number of MHC molecules can increase 20-fold in response to cytokines. Also, the number of MHC molecules binding a particular peptide can increase. So a T cell with "moderate" avidity could become a high avidity T cell if the APC expressed many more MHC molecules.